DIMENSIONAMENTO DA REDE DE ADUÇÃO MEMÓRIA DE CÁLCULOS

ADUTORA DO POÇO AO RESERVATÓRIO ELEVADO TRECHO 01 DN 150mm - L=3.249,09m

LOCALIDADES: VILA LOLÔ, IPUEIRAS, VARZEA DAS PEDRAS, BOIADA, RAPOSA, MALHADA VERMELHA E ADJACÊNCIAS

COMPRIMENTO TOTAL DA ADUTORA	7.238,96 m
TRECHO 01 (DO POÇO DE CAPTAÇÃO ATÉ A TRANSIÇÃO DA TUBULAÇÃO DN 150 / DN 100	3.249,09 m
TRECHO 02 (DO PONTO DE TRANSIÇÃO DA TUBULAÇÃO DN 150 / DN 100 ATÉ O RESERVATÓRIO ELEVADO)	3.989,87 m

DADOS DO PROJETO	
NÚMERO DE FAMILIAS ATENDIDAS	554
NÚMERO DE PESSOAS POR FAMILIA	4,10
HORIZONTE DO PROJETO - (Nº de anos) = n	20
TAXA DE CRESCIMENTO ANUAL - (%)	2,0
CONSUMO DIÁRIO PERCAPTA - (Litro/Pessoa) = q	100
COEFICIENTE DE MÁXIMA DEMANDA DIÁRIA = K1	1,2
COEFICIENTE DE MÁXIMA DEMANDA HORÁRIA = K2	1,5
HORAS DE FUNCIONAMENTO DIÁRIO = a	16

LOCALIDADE BENEFICIADA	FAMÍLIAS ATENDIDAS
VILA LOLÔ	68
IPUEIRAS	15
VARZEA DAS PEDRAS	31
BOIADA	17
RAPOSA	21
MALHADA VERMELHA	120
ADJACÊNCIAS	80
TOTAL	352

1. DEMANDA HÍDRICA DO PROJETO

Os parâmetros adotados para dimensionamento do sistema de abastecimento foram:

1.1 POPULAÇÃO PROJETADA PREVENDO INCLUSÃO DA SEGUNDA ETAPA (Pa)

Pa = Nº de familias x Nº de pessoas por familia

POPULAÇÃO PROJETADA PREVENDO INCLUSÃO DA SEGUNDA ETAPA

Nº de familias = 554

Nº de pessoas por familia = 4,10

 $Pa = 554 \times 4{,}10 = 2271 \text{ habitantes}$

POPULAÇÃO ATUAL (INICIAL)

 N^0 de familias = 352

Nº de pessoas por familia = 4,10

Pa= 352 x 4,10 = 1443 habitantes

OBSERVAÇÃO:

O projeto contempla uma população inicial de 352 famílias, referente as localidades de Vila Lolô, Ipueiras, Varzea das Pedras, Boiada, Raposa, Malhada Vermelha e Adjacências. Porem no dimensionamento da captação e adutora, adotamos uma população inicial de 554 famílias, prevendo atender futuramente a segunda etapa do projeto beneficiando outras comunidades no entorno inicial (trecho 01) da adutora com tubulação DN 150mm e incremento populacional previsto de 202 famílias.

1.2 POPULAÇÃO PROJETADA (Pp)

Pp = 2.271 x 1,4859 = 3375 habitantes

1.2.1 Taxa de Crescimento Populacional (Tc)

1 = constante

i = taxa de crescimento anual de 2,00%

n = horizonte do projeto de 20 anos

$$Tc = (1 + 0.020)$$

Tc = 1,4859

1.3 VAZÃO DO PROJETO (Q)

DEMONSTRATIVO DAS VAZÕES

1.3.1 VAZÃO MÉDIA (Qm)

0	Pp x q	
Qm =	86.400	

Onde:

Pp = população projetada	3.375
q = consumo diário percapita (litro/pessoa)	100
a = horas de funcionamento diário	16

 $Q_{m} = 337.507,33$ litros/dia $Q_{m} = 14.062,81$ litros/hora $Q_{m} = 14,06281$ m³/h $Q_{m} = 3,90633$ litros/segundo

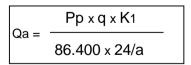
O... 0.0004 miles/sege

Qm = 0,00391 m³/s

1.3.2 VAZÃO MÁXIMA DIÁRIA (Qmd)

0	Pp x q x K1	
Qmd =	86.400	

Onde:


Pp = população projetada	3.375
q = consumo diário percapita (litro/pessoa)	100
K1 = coeficiente de máxima demanda diária	1,2
a = horas de funcionamento diário	16

 $Q_{md} = 405.008,79$ litros/dia $Q_{md} = 16.875,37$ litros/hora $Q_{md} = 16,87537$ m³/h

Qmd = 4,68760 litros/segundo

Qmd = 0,00469 m³/s

1.3.3 VAZÃO DE ADUÇÃO (Qa)

Onde:

Pp = população projetada	3.375
q = consumo diário percapita (litro/pessoa)	100
K1 = coeficiente de máxima demanda diária	1,2
a = horas de funcionamento diário	16

2. RESERVAÇÃO

O volume do reservatório de distribuição é calculado baseado em 1/3 do consumo médio diário máximo da população.

Valendo salientar que a reservação foi dimensionada para atender a população atual (inicial) do projeto que é de 352 famílias.

$$V = \frac{1}{3} \times Pa \times Tc \times q \times K1$$

V = volume do reservatório (m³)

$$V = 85,72 \text{ m}^3$$

Para efeito de cálculo no projeto foi adotado um volume de: 91 m³

O volume de reservação adotado será dividido entre dois reservatórios elevados c/capacidade individual de 45,50m³ e interligados (45,50m³ x 2,00 = 91,00m³).

Dados dos Reservatórios Elevados:

Tipo: Elevado

Volume: Volume bruto: 45,50 m3 x 2,00 = 91,00m3

Volume útil: $43,40 \text{ m3} \text{ x } 2,00 = 86,80 \text{m}^3$

Formato: cilindrico Fuste: 10,00 m Altura: 16,50 m Diâmetro 3,00 m

3. CÁLCULO DA ADUTORA DE ÁGUA BRUTA

O diâmetro dos trechos em recalque foram dimencionados pela fórmula de Bresse:

$$D = 1,20 \sqrt{Q (m^3/s)}$$

D = 0.101 m

D = 100,62 mm

D = 150 mm

D = 0.150 m

O diâmetro comercial adotado será de 150 mm

DN 150mm referente ao trecho inicial com extensão de 3.249,09m

4. CÁLCULO DAS PERDAS DE CARGA DA ADUTORA

Cálculo das perdas de carga longitudinais (Hf) - Hazen Willians Dado: C = Tubulação PVC = 140

$$J = \sqrt{\frac{10,64}{D^{4,87}} x \left(\frac{Q}{C}\right)^{1,852}}$$

J = 0.0012 m/m

5. PERDAS DE CARGAS POR ATRITO E ACIDENTAIS

Profundidade de colocação da bomba (PC) Comprimento da adutora de água bruta (L) PC = 8,00 m L = 3249,09 m

L total = 3257,09 m

$$Hf = J \times L$$

Hf = 3,89 m.c.a

Hfacid. = 0,19 m.c.a

As perdas longitudinais foram calculadas para todo trecho de adução um total de: **3.249,09 metros.**

6. CÁLCULO DA VELOCIDADE (v)

$$V = 0.355xCxD^{0.63}xJ^{0.54}$$

V = 0.40 m/s

7. GOLPE DE ARIETE

7.1. CELERIDADE

DADOS:

C = celeridade da onda (m/s)

D = diâmetros dos tubos (mm)

e = espessuras dos tubos (mm)

K = coeficiente que leva em conta os módulos de elasticidade para tubos

PVC = 18 D = 150

e = 6.8

ESPESSURA TUBO DE PVC RÍGIDO JE PBA						
	DIÂMETRO (mm) PRESSÃO MÁXIMA					
TIPO	50	75	100	(mca)		
C-12	2,7	3,9	5,0	60		
C-15	3,3	4,7	6,1	75		
C-20	4,3	6,1	7,8	100		

ESPESSURA TUBO DE PVC RÍGIDO JE DEFoFo					
TIPO DIÂMETRO (mm) PRESSÃO MÁXIMA					
TIPO	100	150	200	(mca)	
1 Mpa	4,8	6,8	8,9	100	

$$C = \frac{9900}{\sqrt{48,3 + Kx \frac{D}{e}}}$$

C = 469,12

7.2. CALCULO DA SOBREPRESSÃO

$$ha = \frac{CxV}{g}$$

ha = 19,00 m

7.3. DESNÍVEL GEOMÉTRICO (hg)

$$Hg = -4,73 \text{ m}$$

 $HgT = Hg + Hr = 11,77 \text{ m}$

Cma = maior cota do perfil = 80,45 Referente a cota de transição DN 150mm / DN 100mm

Mc = menor cota do perfil = 85,18 Referente a cota do poço de captação

Hr = altura do reservatório = 16,50

7.4. SOBREPRESSÃO MÁXIMA - GOLPE DE ARIETE

Hpmax = ha+HgT

hpmax= 30,77

7.4.1 CORREÇÃO DA SOBREPRESSÃO SOBRE A CLASSE DE PRESSÃO DOS TUBOS

PN = Pressão Corrigida = 20% da pressão nominal CL = Classe de Pressão do tubo escolhido em m.c.a

Correção da PN = CL (m.c.a) x 20%

PNcorigida= 12

Pn=hpmax

Pn= 42,77

MATERIAL: Tubo PVC DEFoFo JE 1MPa DN 150mm

A classe da tubulação a ser empregada no trecho da adutora será compatível com as pressões de serviço de 10 Kg/cm2 escolhida em função da pressão de serviço:

CLASSE	PRESSÃO DE SERVIÇO (m.c.a)
12	60
15	75
20	100

7.5. CÁLCULO DE PERDAS DE CARGA LOCALIZADAS

RECALQUE 100 mm

0,100 m

Peças	k	D	V	(K*V)^2/2g
Ligação de pressão				0,062
Ampliação gradual	0,30	100	0,597	0,005
Curva de 90o.	0,40	100	0,597	0,007
Registro gaveta	0,20	100	0,597	0,004
Válvula retenção	2,50	100	0,597	0,045
Barrilete				0,027
Ampliação gradual	0,30	100	0,597	0,005
Registro de gaveta	0,20	100	0,597	0,004
Saída de canalização	1,00	100	0,597	0,018
Total - Hr(hlocalizada)	-			0,089

7.6. ALTURA MANOMÉTRICA TOTAL

Composição da alturamanométrica total(AMT)

Hf =	3,89	OUTROS DADO	OS:
ND =	4,00		
hg =	-4,73	NE = 1,50	m
hflocalizada =	0,089	ND = 4,00	m
hfacidental =	0,19	D = 150,00	mm
Hf clorador =	2,00		
Hf filtro =	0,00		
hreservatório =	16,50		

AMT = Hf + ND+ hg + hlocalizada + hacidental + hreservatório

AMT1 = 21,95 m.c.a

AMT2 = 46,90 m.c.a ver dimensionamento do trecho 02 em anexo

AMT = 68,85 m.c.a

Onde:

AMT = altura manométrica total (AMT1 + AMT2)

AMT1 = altura manométrica total referente ao trecho 01 (L=3.249,09m DN 150mm)

AMT2 = altura manométrica total referente ao trecho 02 (L=3.989,87m DN 100mm)

Hf = perdas de carga por atrito ao longo da adutora

ND = nivel dinâmico do poço

hg = desnível geométrico do terreno (diferença de nícel entre a cota do poço profundo menor cota e a cota do reservatório elevado maior cota)

hflocalizada = perdas de carga localizadas

hfacidental = perdas de carga acidental (considerado 5% das perdas de carga por atrito ao longo da adutora)

Hf clorador = perdas de carga no clorador

hreservatório = altura do reservatório elevado

7.7. POTENCIA EXIGIDA NO EIXO DA BOMBA

$$P = \frac{Q(l/s)xAMT}{75x\eta}$$

Onde:

FUNASA

P = potência exigida no eixo da bomba (CV)	9,93
Q = vazão do projeto (l/s)	4,6876
AMT = altura manométrica total (mca)	68,85
n = rendimento da bomba (%)	65,00
Fator de correção da potência no eixo da bomba =	1,20
Horas de funcionamento (bombeamento) diário	16

Potência no eixo bomba =	9,93 C.V.
Potência no motor =	11,92 C.V.
D (A ' ' 1	12 00 G I

Potência comercial = 12,00 C.V.

Tipo be bomba = Submersa

Observação: O <u>fator de correção</u> acima mencionado, trata-se de uma folga que varia de acordo com a potência do motor (vide tabela abaixo segundo Azevedo Neto).

POTÊNCIA DO MOTOR		MOTOR	FATOR DE CORREÇÃO	
<	ou	=	2 CV	50 %
	2	а	5 CV	30 %
	5	а	10 CV	20 %
	10	а	20 CV	15 %
		de	20 CV	10 %

8. BLOCOS DE ANCORAGEM

Cálculo do empuxo		E = 2(Sgh) sen(a/2)	
	ESPECIFICAÇÕES	UNIDADE	DADOS
E	Empuxo	kg	Calculado
h	Pressão interna máxima	m	42,77
g	Peso específico do líquido	kg/m³	1000
а	Ângulo da curva	radianos	90
D	Diâmetro da tubulação	mm	150
S	Seção da tubulação	m²	0,01767

Quadro Demonstrativo		
D	(mm)	150
S	(m²)	0,01767
g	(kg/m³)	1.000
h	(m)	43
а	(Graus)	90,00
а	(Radianos)	1,571
E	(kg)	1.068,861

Cálculo do Bloco de Ancoragem			
	D	mm	150
	а	Graus	90
Cálculo da área mínima	E	kg	1.068,86
de contato e volume do bloco de ancoragem	Α	m²	534,430
	Volume do bloco	m³	0,445
	Quantidade de blocos	Un	11,00
	Volume Total	m³	4,899

Valores de s _{adm} para diversos tipos de solo		
Taxa admisível no solo na vertical	S _{ADM}	kg / cm²
Rocha		20
Rocha alterada, mantendo ainda a estrutura original		10
Rocha alterada, necessitando quando muito de picareta para escavação)	3
Pedregulho ou areia grossa compactada		4
Argila rígida		4
Argila média		2
Areia grossa de compacidade média		2
Areia fina compacta		2
Areia fofa ou argila mole escavada à pá		1